

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: _images/x8o0xh40cdf6a67l.svg]Build status [https://ci.appveyor.com/project/Kralizek/nybus] [image: _images/badge.svg]Coverage Status [https://coveralls.io/github/Nybus-project/Nybus?branch=master] [image: _images/Nybus.svg]Nybus [https://www.nuget.org/packages/nybus]

Nybus

Nybus is an application framework that allows you to build message-based applications.

Since it natively targets .NET Standard 2.0, it can be used to create applications that will run on both .NET Framework and .NET Core.

Commands and Events

Nybus is based on the idea that messages are not all the same and should not be treated in the same way. Messages come in two kinds: commands and events.

Commands are messages that must be handled only by the first available responder.

public class AddItemToCart : ICommand
{
 public Guid CartId { get; set; }

 public string ItemSku { get; set; }

 public double Quantity { get; set; }
}

On the other hand, events are messages that must be delivered to all subscribers. If no subscriber is available, the message is lost by default.

public class CartUpdated : IEvent
{
 public Guid CartId { get; set; }
}

Example

A typical example of a message-based architecture is a web application that offloads a long-running job to an array of work processes by invoking a command.

await bus.InvokeCommandAsync(new AddItemToCart {
 CartId = Guid.NewGuid(),
 ItemSku = "something-cool",
 Quantity = 1.0
});

The first available worker process will execute the job and, when completed, will raise an event to notify that the job is complete.

public async Task HandleAsync(IDispatcher dispatcher, ICommandContext<AddItemToCart> context)
{
 await DoSomethingCoolAsync(context.Command);

 await dispatcher.RaiseEventAsync(new CartUpdated {
 CartId = context.Command.CartId
 });
}

The web application itself might have subscribed to such event and notify its clients via a push notification.

Similarly, another listener could be used to deliver a notification to a smartphone app.

How to Install

Nybus is available on NuGet.

Currently, the following packages are available:

	Nybus.Abstractions [https://www.nuget.org/packages/Nybus.Abstractions] contains the base types. It’s small by design so that you can include it into your business logic without carrying too many unwanted dependencies.

	Nybus [https://www.nuget.org/packages/Nybus] contains the core classes of Nybus.

	Nybus.Engine.RabbitMq [https://www.nuget.org/packages/Nybus.Engine.RabbitMq] contains the engine needed to interact with RabbitMq [http://www.rabbitmq.com/].

Future development

In order for the 1.0 to go live, there is a need for small quality-of-life improvements. You can track the status of this release here [https://github.com/Nybus-project/Nybus/milestone/1].

Once the version 1.0 is live, the future developments will go in the direction of broadening the feature set and the supported engines together with some utilities that will help developers.

Additional engines

Currently, in the pipeline there are the following engines

	An engine based on AWS managed services such as SQS and SNS fully serverless

	An engine based on ActiveMQ to be used in conjunction with the ActiveMQ managed service offered by Amazon.

	An engine based on MassTransit + RabbitMQ: this will make possible the cooperation between applications written in Nybus v1 and those written in Nybus v0.

Execution filters

Support for execution filters will be added in Nybus 1.1. The idea is to have the possibility to intercept the handlers’ execution so to minimize the risk of cross-cutting concerns to pollute the handlers.

Two concrete examples of execution filters could be the integration with services like AWS CloudWatch and AWS X-Ray to properly push metrics and traces.

Templates

Once few patterns of usage will be established, it would be convenient for the developers to create a new Nybus application by simply typing dotnet new nybus in their console of choice.

Previous versions

Whilst not having hit version 1.0 yet, Nybus has been around for a while already. Given the huge differences between the two codebases, the previous version of Nybus lives in the v0 branch [https://github.com/Nybus-project/Nybus/tree/v0].

Also, the packages produced by the new codebase have been named so that there is no risk of collision with the previous major version.

Here are the links to the previous packages

	Nybus.Interfaces [https://www.nuget.org/packages/Nybus.Interfaces]

	Nybus.Core [https://www.nuget.org/packages/Nybus.Core]

	Nybus.Castle.Windsor [https://www.nuget.org/packages/Nybus.Castle.Windsor]

	Nybus.MassTransit [https://www.nuget.org/packages/Nybus.MassTransit]

	Nybus.NLog [https://www.nuget.org/packages/Nybus.NLog]

	Nybus.Rx [https://www.nuget.org/packages/Nybus.Rx]

Versioning

Nybus follows Semantic Versioning 2.0.0 [http://semver.org/spec/v2.0.0.html] for the public releases (published to the nuget.org [https://www.nuget.org/]).

Building

Nybus uses CAKE [https://cakebuild.net/] as a build engine.

	Here you can see the build history [https://ci.appveyor.com/project/Kralizek/nybus/history]

	Here you can see the code coverage history [https://coveralls.io/github/Nybus-project/Nybus]

If you would like to build Nybus locally, just execute the build.cake script.

You can do it by using the .NET tool created by CAKE authors and use it to execute the build script.

dotnet tool install -g Cake.Tool
dotnet cake

Many thanks to AppVeyor [http://www.appveyor.com/] and Coveralls [https://coveralls.io/] for their support to the .NET Open Source community.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

